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Shortcomings of CTT

1. Examinee’s ability is exam-dependent

For a fixed length test, examinee’s ability is high if the test is easy; 
and examinee’s ability is low if the test is difficult.  Therefore, 
examinee’s ability is exam-dependent.

2. Item/Test Difficulty is group-dependent

Item is easy if higher abilities take the test; and item is difficult 
if low abilities take the test.  Therefore, item/test difficulty is 
group-dependent.



3. CTT is test-oriented.

Score is given at the test level, but there is no 
basis in determining how well an examinee perform 
a particular item.



Limitations of CTT

1. Cannot predict (probabilistically) an examinee’s 
response to an item.

2. Cannot predict individuals performance on certain 
items unless items have been administered to similar 
(comparable) individuals.

3. In adaptive testing, no mechanism exists in 
determining which item (from an item pool) is most 
appropriate to administer next.

4. Cannot determine how effective an item is at each 
level of ability.

5. Cannot estimate an examinee’s ability from any given 
set of items  



CTT Approach for Item Analysis 
using CITAS

CITAS is FREE!



Rasch Model
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βv = ability of examinee
Di  = difficulty of item i
e   = 2.718 ( Euler’s constant)
Xvi = 1, 0    (1 if correct answer; 0 if wrong)

Pvi = probability  that person v  gets a correct answer 
on item i, given his/her ability β and item difficulty D.
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-∞ < βv < +∞  and -∞ < Di < +∞ . 



For example:

Suppose the ability of person v is β=3, while the difficulty 

level of item i is D=1. Then,  the probability of getting 

a correct answer is .8808.
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Suppose the same person will attempt to answer an 
item with D=2. Then, the probability of getting a correct 
answer is .7311.
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Probabilities (Pvi) can be easily computed in 
Excel using the formula: 

=Exp(B-D)/(1+EXP(B-D))

Item1 Item2 Item3
B D=-1 D=0 D=1

4.0 0.9933 0.9820 0.9526
3.9 0.9926 0.9802 0.9478
3.8 0.9918 0.9781 0.9427
3.7 0.9910 0.9759 0.9370
3.6 0.9900 0.9734 0.9309
3.5 0.9890 0.9707 0.9241
3.4 0.9879 0.9677 0.9168
3.3 0.9866 0.9644 0.9089
3.2 0.9852 0.9608 0.9002
3.1 0.9837 0.9569 0.8909
3.0 0.9820 0.9526 0.8808
2.9 0.9802 0.9478 0.8699
2.8 0.9781 0.9427 0.8581

Excel outputs below:

Excelfile.xls

C:/Users/Johnny Amora/Desktop/rasch/rasch.xlsx


Items with different difficulty levels

Item Characteristic Curves (ICCs)
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Notes:
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 The probability of success 
is .5 if person ability 
matches the item 
difficulty.

For  β=D,

5. Pvi 

The probability of success is greater than .5 if 
person ability is higher than the item 
difficulty .

For   β>D,

5. Pvi 

The probability of success is lesser than .5 if 
the person ability is lesser than the item 
difficulty.

For  β<D,



Odds for Success
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Consider Person v:
Person v’s odds of correctly getting a correct answer on item i, given his 

ability βv and item difficulty DI is defined as:

Taking Logarithm:
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Consider another Person m:

Similarly, Person m’s log odds of getting a correct 
answer on the same item, given his ability Bm and item 
difficulty Di:
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Person v’s log odds of correctly getting a correct answer on 
item i, given his ability βv and item difficulty DI is defined as:



Comparing the abilities of Persons v and Person m:

To compare, we subtract the logarithm of odds:
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Notice that the difference in the abilities of Person v and Person m 
does not involve Di at all. This means that comparison on the person abilities 
does not depend on which particular item is used and so comparison is 
“ITEM-FREE”.  

An analogous argument leads to "PERSON-FREE" comparisons
of item difficulties.



Estimation of Rasch Parameters [1]

Winsteps implements te following methods of 
estimating Rasch parameters: 

– JMLE (Joint Maximum Likelihood Estimation by 
Wright and Panchapakesan), 

– PROX  (Normal Approximation Algorithm  devised 
by Cohen (1979)). 



Estimation of Rasch Parameters [2]
Rasch measures are obtained by iterating through the data.

• STEP 1: Initially all unanchored parameter estimates 
(measures) are set to zero. 

• STEP 2: Then the PROX method is employed to obtain rough 
estimates. Each iteration through the data improves the PROX 
estimates until they are usefully good.

• STEP 3: Then those PROX estimates are the initial estimates 
for JMLE which fine-tunes them, again by iterating through 
the data, in order to obtain the final JMLE estimates. The 
iterative process ceases when the convergence criteria are 
met. 



Convergence Criteria

• Largest Logit change 
(default of Winsteps: LCONV=.0001 logits)

• Largest Score Residual 
(default of Winsteps: RCONV=.01 score points)

• MJMLE= 0 ; unlimited JMLE iterations
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• Rasch model creates a 

“yardstick” that can be used to 
measure both Person Ability and 
Item Difficulty.

Rasch “Yardstick” [1]

• The values in the yardstick 
are logits, which range 
between -∞ and + ∞.  But 

for application purposes, 

they range between -4 and 

+4 or between -3 and +3. 
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• The logits can be 

transformed so that 

the range would be 

understandable  by 

non-technical users. 

• For example, the 

logits can be 

transformed so that 

the values would fall 

between 0 and 100.

0

100

Transformed Version

50

Rasch “Yardstick” [2]
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Because Person 
ability and item 
difficulty are 
measured using a 
common “yardstick, 
then both person and 
items can be placed in 
a map, called Person-
Item map.

Person-Item Map [1]

Very Difficult Items

Very easy Items

Most able students

Least  able students
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Person-Item Map [2]

Very Difficult Items

Very easy Items

Most able students

Least  able students

• Items are 
hierarchically arranged 
from very easy 
(bottom) up to very 
difficult (top). 

• Also, least able 
students are placed at 
the bottom and most 
able students at the 
top.
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Person-Item Map [3]

Very Difficult Items

Very easy Items

Most able students

Least  able students

The nice with  
Rasch modeling is that 
we can determine which 
students are able to 
answer correctly  which 
items. Or, we can 
determine which items 
can be answered 
correctly by which 
students.



Things to consider in 
constructing a test using Rasch Model

• Validity: Construct Validity, Fit validity

• Reliability
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Does the item difficulty 
hierarchy make sense?
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Fit Validity:
Do data fit the 
rasch model 
usefully well for 
the purpose of 
measurement?

James*

S = v x t



Concept of Model and Data Fit

• Major concern of Rasch Modeling is its need 
for unidimensionality.

• Investigation of fit statistics determines 
whether the data are unidimensional in 
nature.

• Both infit and outfit statistics are evaluated to 
determine how data-to-model fit occurs for 
each item and person fit.



Infit and Outfit Statistics 

• Infit statistics are sensitive  to the inlier
pattern of observations.

• Outfit statistics are sensitive to outlier
observations.



Idealized Guttman Scale (Gutman, 1944)

1 2 3 4 5 6

A 1 1 1 1 1 0

B 1 1 1 1 0 0

C 1 1 1 0 0 0

D 1 1 0 0 0 0

E 1 0 0 0 0 0

Easiest items                                              Hardest Items

Most Able Student

Least Able Student



Data with large infit statistics

1 1 1 0 0 1 1 0 0 0

Larger infit statistics because  the 1’s  occurring in the 
middle-right section of the  continuum and the 0’s 
appearing in the middle-left section of the continuum are 
unexpected.

Easy items Difficult items



Data with large outfit statistics

0 0 1 1 1 0 0 0 1 1

Larger outfit statistics because observations at the extreme 
ends of the continuum are unexpected.



Fit Statistics as Indicator of Validity

Data adequately fitting the model is a key 
indicator of validity.

• Removal of misfitting persons and items that 
grossly  misfit the model’s expectation is 
acceptable. 

[ Removal of misfitting persons and items 
improves the precision of the measures 
produced.]



Formulas: Fit Statistics

• Outfit Mean Square: outlier-sensitive fit statistic. This is based on the 
conventional chi-square statistic.

Outfit Mean Square = average [ (standardized residuals2)] = chi-square/d.f.

Infit Mean Square = average [ (standardized residuals2)* information)]

• Infit Mean Square: inlier-pattern-sensitive fit statistic. This is based on the 
chi-square statistic with each observation weighted by its statistical 
information (model variance). 

• Z-Standardized: statistical significance 
(probability) of the chi-square (mean-
square) statistics occurring by chance 
when the data fit the Rasch model. The 
values reported are unit-normal 
deviates.

ZSTD probabilities:

two-sided unit-normal deviates

1.00

1.96

2.00

3.00

4.00

5.00

p= .317

.050

.045

.0027

.00006

.0000006



Infit Mean Square and Outfit Mean Square: 
Rule of Thumbs

> 2.0 Distorts or degrades the measurement system.

1.5 - 2.0 Unproductive for construction of measurement, 
but not degrading.

0.5 - 1.5 Productive for measurement.

<0.5 Less productive for measurement, but not 
degrading. May produce misleadingly good 
reliabilities and separations.

Note:  1 = Expected Value (perfect fit)



Reliability

• Reliability means reproducible of relative 
measure location.

• “High item reliability" means that there is a high 
probability that items estimated with high 
measures actually do have higher measures than  
items estimated with low measures. 

• “High person reliability" means that there is a 
high probability that persons estimated with high 
measures actually do have higher measures than 
persons  estimated with low measures. 



Person Reliability

Person reliability depends chiefly on:

• Sample ability variance. Wider ability range = higher person reliability.

• Length of test. Longer test = higher person reliability

• Sample-item targeting. Better targeting = higher person reliability

How to increase person reliability?

– test persons with more extreme abilities (high and low)

– lengthen the test. 

Person Reliability is independent of sample size. It is largely uninfluenced 
by model fit.



Item Reliability
Item reliability depends chiefly on

• Item difficulty variance. Wide difficulty range = high 
item reliability

• Person sample size. Large sample = high item 
reliability

How to increase item reliability?
– test more people.

Item Reliability is independent of test length. It is largely 
uninfluenced by model fit.



Sample Size Requirements

• Rasch is the same as any other statistical analysis with a small 
sample:

– Less precise estimates (bigger standard errors)

– Less powerful fit analysis

– Less robust estimates

• Very small sample (say, n=2 or 3 examinees) provides a very 

unstable results, while very large sample (say, n=2000 or 

3000) provides a very precise results. However, large sample 

is too expensive and time-consuming. So, how big a sample is 

necessary?



• Linacre (1994) provides the following sample size guidelines:

Item Calibrations

stable within

Confidence Minimum sample size 

range

(best to poor targeting)

Size for most

purposes

± 1 logit 95% 16 † -- 36 30

(minimum for 

dichotomies)

± 1 logit 99% 27 † -- 61 50

(minimum for polytomies)

± ½ logit 95% 64 -- 144 100

± ½ logit 99% 108 -- 243 150

Definitive or

High Stakes

99%+ (Items) 250 -- 20*test length 250

Adverse Circumstances Robust 450 upwards 500

Reference:
Linacre JM. (1994). Sample Size and Item Calibration Stability. Rasch Measurement Transactions, 7:4 p.328



Some Features of Rasch Model

1. Examinee performance on an 
unadministered item can be predicted.

2. Item and ability parameters can be estimated

3. Item parameter estimates are independent 
of the group of examinees who took the test

4. Examinee ability estimates are independent 
of the group of test items administered

5. Precision of ability estimates is known



Rasch versus 1PL IRT

Aspect Rasch

IRT:

One-parameter Logistic Model

Symbol Rasch 1PL IRT, also 1PL

For Practical 
purposes

When each individual in the 
person sample is parameterized 
for item estimation, it is Rasch.

When the person sample is 
parameterized by a mean and standard 
deviation for item estimation, it is 1PL IRT.

Motivation

Prescriptive:

Distribution-free person 

ability estimates and 

distribution-free item difficulty 

estimates on an additive 

latent variable

Descriptive:

Computationally simpler 

approximation to the Normal Ogive

Model of L.L. Thurstone, D.N. Lawley, 

F.M. Lord

Formulation:

Exponential Form

Formulation: 

Logit-linear form



Aspect Rasch

IRT:

One-parameter Logistic Model

Students/persons Person n of ability Bn in logits

Normally-distributed person sample 

of ability distribution θ, 

conceptualized as N(0,1), in probits; 

persons are incidental parameters

Items, multiple-choice 

questions, etc.; items 

are structural 

parameters

Item i of difficulty Di in logits
Item i of difficulty bi (the "one 

parameter") in probits

Nature of binary data
1 = “correct”

0 = “wrong”

1 = “correct”

0 = “wrong”

Probability of binary 

data

Pni = probability that 

person n correctly answered 

item i

Pi(θ) = overall probability of 

“correct" by person distribution θ on 

item i



Aspect Rasch

IRT:

One-parameter Logistic Model

Local origin of 

scale: zero of 

parameter estimates

Average item difficulty, or 

difficulty of specified item. 

(Criterion-referenced)

Average person ability. (Norm-

referenced)

Item discrimination

Item characteristic curves 

(ICCs) modeled to be parallel 

with a slope of 1 (the natural 

logistic ogive)

ICCs modeled to be parallel with a slope 

of 1.7 (approximating the slope of the 

cumulative normal ogive)

Fit evaluation
Fit of the data to the model

Local, one parameter at a time

Fit of the model to the data

Global, accept or reject the model

Data-model 

mismatch

Defective data do not support 

parameter separability in an 

additive framework. Consider 

editing the data.

Defective model does not adequately 

describe the data. Consider adding 

discrimination (2-PL), lower asymptote 

(guessability, 3-PL) parameters.



Aspect Rasch

IRT:

One-parameter Logistic Model

Minimum 

reasonable sample 

size

30

Linacre (1994)

200 

(Downing 2003)

First conspicuous 

appearance
Rasch, Georg. (1960) 

Probabilistic models for some 

intelligence and attainment 

tests. Copenhagen: Danish 

Institute for Educational 

Research.

Birnbaum, Allan. (1968). 

Some latent trait models. In F.M. Lord & 

M.R. Novick, (Eds.), Statistical theories 

of mental test scores. Reading, MA: 

Addison-Wesley.

First conspicuous 

advocate

Benjamin D. Wright, 

University of Chicago

Frederic M. Lord, Educational Testing 

Service

Widely-authoritative 

currently-active 

proponent

David Andrich, 

Univ. of Western Australia, 

Perth, Australia

Ronald Hambleton, 

University of Massachusetts

Source (of the comparison):
Linacre J.M. (2005). Rasch dichotomous model vs. One-parameter Logistic Model. Rasch Measurement 
Transactions, 19:3, 1032



Demonstration
&

Computer Hands-on

Rasch Analysis using Winsteps/Ministep

Download data and installers from this link:

https://www.dropbox.com/sh/vkxfosv6c630ftm/AAB-A2NqO2QG44J_Wa8CuvAsa?dl=0

https://www.dropbox.com/sh/vkxfosv6c630ftm/AAB-A2NqO2QG44J_Wa8CuvAsa?dl=0


Download Free Ministep
www.winsteps.com/ministep.htm

MINISTEP:
• 25 items
• 75 persons

• WINSTEPS
• 30,000 items
• 10,000 persons

http://www.winsteps.com/ministep.htm


Example 1- Math Curriculum Test

12 items
14 persons



Example 2 – KNOX CUBE Test
18 items, 35 persons



Q & A
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Thank you!

For further questions, contact:

Johnny Amora

De La Salle-College of Saint Benilde

Email: johnny.amora@gmail.com || Mobile: 0908-344-7184
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